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Abstract. A simple general method of regularization of the higher-order Wentzel–Kramers–
Brillouin (WKB) integrals for the bound state problem of the one-dimensional Schrödinger equation
with a real-analytic potential is proposed. The method is based upon the explicit separation of the
integrand singularities. As an example, a contribution of the higher-order WKB corrections to the
energy eigenvalues for the quasi-exactly solvable potential, V (x) = 10x2 +10x4 +x6, is considered.

1. Introduction

The Wentzel–Kramers–Brillouin (WKB) semiclassical approach [1–3] is one of the most
useful methods for computing approximate energy eigenvalues of the one-dimensional
Schrödinger equation. Recent success in extension of this technique to supersymmetric
quantum mechanics [4–15] has, in its turn, revived interest in the original WKB quantization
condition [16–21].

However, in general, the lowest-order WKB approximation yields moderately accurate
eigenvalues. Hence, to improve the accuracy it is necessary to consider the higher-order
corrections in h̄.

The initial work in this direction was done by Dunham [22]. Although at first
sight this problem seems relatively simple, it has proved to be hard due to nonintegrable
singularities at the classical turning points. Several attempts have been made to avoid this
difficulty and to transform the WKB integrals into integrable expressions. In particular, the
higher-order corrections to the quantization conditions have been computed by rewriting the
integrals in terms of derivatives, with respect to energy [23, 24] and in terms of complete
elliptic integrals [25–28]; by means of replacement of the integrands by an approximate
expression [29]; integrating in the complex x-plane [30, 31] and making use of quadrature
routines [32].

In this paper we propose a new, computationally efficient technique for calculating
the WKB integrals, based upon the regularization with explicit separation of the integrand
singularities [33]. To the best of our knowledge such a straightforward approach to the
regularization of the WKB quantization condition has not been so far considered in the
literature.

† Author to whom correspondence should be addressed.
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2. Higher-order WKB approximations

Let us briefly sketch the derivation of higher-order correction terms within the WKB
framework. We shall confine our interest to the bound state problem for the one-dimensional
Schrödinger equation

− h̄2

2m
� ′′(x) + [V (x) − E]�(x) = 0 (1)

with two classical turning points given by V (x1) = V (x2) = E.
The WKB approximation consists in seeking a solution in the form

�(x) = exp

(
i

h̄

∫ x

S(x, E, h̄) dx

)
. (2)

Then the time independent Schrödinger equation (1) for �(x) goes over into the nonlinear
Riccati equation for the function S(x, E, h̄),

ih̄S ′ − S2 + 2m[E − V (x)] = 0 (3)

where the prime denotes differentiation with respect to x.
When the following asymptotic expansion in powers of the Planck constant:

S(x, E, h̄) =
∞∑

k=0

(
h̄

i

)k

Sk(x, E) (4)

is substituted into the Riccati equation (3) and the coefficients of successive powers of h̄ are
equated to zero, one obtains the recurrent system

S0(x, E) =
√

2m[E − V (x)]

S ′
n−1(x, E) = −

n∑
k=0

Sn−k(x, E)Sk(x, E) n = 1, 2, . . . .
(5)

Further, we proceed following the analytic approach by Wentzel [1], Zwaan [34] and
Dunham [22] (see also [35, 36]). In this approach, the eigenvalue selection is effectively
achieved by enforcing not the square integrability of the eigenfunctions but their analyticity
through considering the solution of equation (1) not only on the real axis but in the whole
complex x-plane.

As is generally known, in the case of a discrete spectrum of the Schrödinger equation with
a real-analytic potential, the eigenfunctions are the analytic functions with a finite number of
simple real zeros. Therefore, we can apply the principle of argument, known from the analysis
of complex variables to the logarithmic derivative, iS(x, E, h̄)/h̄, of the wave function �(x).

Since the wavefunction of the nth excited state has precisely n zeros we have∮
γ

S(x, E, h̄) dx = 2πh̄n (6)

where the integral is taken in a counter-clockwise sense along some contour γ enclosing the
classical turning points and no other singularities of S(x, E, h̄).

Taking into account that within the WKB approach the passage to the classical limit is
implemented using the rule

h̄ → 0 n → ∞ and h̄n = const (7)

the quantization condition (6) combined with the expansion (4)
∞∑

k=0

(
h̄

i

)2k ∮
γ

S2k(x, E) dx = 2πh̄

(
n +

1

2

)
(8)
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where integration of the quantity S1(x, E) is performed explicitly, giving the addition of πh̄

on the right-hand side of this equality, and all other odd terms S3(x, E), S5(x, E) etc, being
total derivatives, vanish when integrating around a closed loop [37].

Upon rewriting in explicit form, this equation up to the order of h̄8 reads∮
γ

{√
E − V +

h̄2

96m
V ′′(E − V )−3/2 − h̄4

6144m2
[7(V ′′)2 − 5V ′V (3)](E − V )−7/2

+
h̄6

196 608m3
[93(V ′′)3 − 224V ′V ′′V (3) + 35(V ′)2V (4)](E − V )−11/2

− h̄6

4096m3
(V (3))2(E − V )−9/2 + O(h̄8)

}
dx = 2πh̄√

2m

(
n +

1

2

)
(9)

where even terms S2k(x, E) are simplified by repeated integration by parts [38].
It is customary to represent this quantization condition as an integral over the real variable.

From equation (5) it is seen that the above-mentioned classical turning points x1 and x2 prove
to be the square root branch points for the functions S2k(x, E). Hence the single valuedness
of the integrand requires that the cut joins these points.

As a next step, we have to choose the branch of the square root and to draw the contour
of integration, γ , to the cut. However, it becomes evident that the integrand has nonintegrable
singularities at the turning points and its regularization is needed.

Usually one follows the method of Krieger et al [23, 24] and expresses this quantization
condition in the tantamount form [9]∫ x2

x1

√
E − V dx − h̄2

48m

d

dE

∫ x2

x1

V ′′(E − V )−1/2 dx

+
h̄4

11 520m2

d3

dE3

∫ x2

x1

[7V ′′2 − 5V ′V (3)](E − V )−1/2 dx

− h̄6

5806 080m3

{
216

d4

dE4

∫ x2

x1

(V (3))2(E − V )−1/2 dx

+
d5

dE5

∫ x2

x1

[93(V ′′)3 − 224V ′V ′′V (3) + 35(V ′)2V (4)](E − V )−1/2 dx

}

+O(h̄8) = 2πh̄√
2m

(
n +

1

2

)
(10)

where singularities already become integrable.
Then the integrals derived are evaluated numerically for different values of E near each

other and the derivatives are obtained by taking differences. However, having used the
numerical evaluation of derivatives, it is difficult to control errors and, hence, to estimate
the accuracy of results [33].

Now we describe a different way of a regularization of the higher-order WKB corrections
that results in easily integrable expressions without derivatives with respect to the energy.

3. Regularization of the WKB integrals

As has been already noted, the integrands of the higher-order terms in equation (9) have
nonintegrable singularities. We intend to circumvent this difficulty by means of a regularization
based upon the explicit separation of singularities [33].

With this end in view let us investigate the behaviour of the singular integrands. In the
vicinity of the turning point x1, their general form may be written as f (x)/(x − x1)

m−1/2.
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Because a function f (x) is regular, it is expanded in a Taylor series, yielding

f (x)

(x − x1)m−1/2
= √

x − x1

{
F(x) +

m∑
k=1

ck

(x − x1)k

}
(11)

where a function F(x) is regular too.
The behaviour of integrands at the second turning point x2 is obviously analogous.
From equation (11) we observe that the non-integrability at the turning points arises from

the pole terms of the right-hand side. For removing these singularities let us consider the
preselected appropriate functions

Pk(x) = (x − x1)
−k

√
(x − x1)(x2 − x)

Qk(x) = (x − x2)
−k

√
(x − x1)(x2 − x)

(12)

whose behaviour in the complex x-plane is qualitatively similar to the behaviour of integrands.
The useful feature of these functions is their integrability along the contour γ encircling the
branch cut. Choosing the branch of the square root with the negative values on the upper side
of the cut, as well as in equation (10), and evaluating the residue at infinity, we find

∮
P1(x) dx = −

∮
Q1(x) dx = π(x2 − x1)∮

P2(x) dx =
∮

Q2(x) dx = −2π

(13)

other integrals being zero.
Clearly, if we add the linear combination∑

k�1

[pk(h̄)Pk(x) + qk(h̄)Qk(x)] (14)

to the integrand, providing its equality to zero at the turning points, the singularities under
consideration may have to be removed.

Note that parameters pk(h̄) and qk(h̄), which we must find by demanding equality of the
integrand to zero at the points x1 and x2, are really polynomials in h̄2 whose order is determined
by the order of approximation.

Thus a general formula for the renormalized quantization condition of the WKB approach
is readily obtainable as follows:

∫ x2

x1

{√
E − V +

h̄2

96m
V ′′(E − V )−3/2 − h̄4

6144m2
[7(V ′′)2 − 5V ′V (3)](E − V )−7/2

+
h̄6

196 608m3
[93(V ′′)3 − 224V ′V ′′V (3) + 35(V ′)2V (4)](E − V )−11/2

− h̄6

4096m3
(V (3))2(E − V )−9/2

+
∑
k�1

[pk(h̄)Pk(x) + qk(h̄)Qk(x)] + O(h̄8)

}
dx

= πh̄√
2m

(
n +

1

2

)
− π(q2 + p2) − π

2
(x2 − x1)(q1 − p1) (15)

where integrals may be computed routinely.
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4. Example of application

As a check, we apply our technique to the linear harmonic oscillator and show straightforwardly
that higher-order corrections are equal to zero, that is to be expected because the first-order
integral already gives the exact eigenvalues. In this case V (x) = x2 and equation (15) becomes

∫ x2

x1

{√
E − x2 +

h̄2

48m
(E − x2)−3/2 − 7h̄4

1536m2
(E − x2)

−7/2

+
31h̄6

8192m3
(E − x2)

−11/2
+

6∑
k=1

[pkPk(x) + qkQk(x)] + O(h̄8)

}
dx

= πh̄√
2m

(
n +

1

2

)
− π(q2 + p2) − π

2
(x2 − x1)(q1 − p1). (16)

Upon equating the integrand to zero at the turning points x1 = −√
E and x2 = √

E, we obtain

q1 = −p1 = h̄2

192E3/2m
− 35h̄4

49 152E7/2m2
+

1953h̄6

4194 304E11/2m3

q2 = p2 = − h̄2

192Em
+

35h̄4

49 152E3m2
− 1953h̄6

4194 304E5m3

q3 = −p3 = − 7h̄4

12 288E5/2m2
+

217h̄6

524 288E9/2m3

q4 = p4 = 7h̄4

24 576E2m2
− 651h̄6

2097 152E4m3

q5 = −p5 = 93h̄6

524 288E7/2m3

q6 = p6 = − 31h̄6

524 288E3m3

that results in identical zeros both for the higher-order part of the integrand and the
renormalization contribution to the right-hand side of equation (16).

In addition, we have computed with our technique the higher-order WKB corrections to
the energy eigenvalues for the potential V (x) = x2 +λx4 and have obtained the same numerical
results as given by Kesarwani and Varshni [26].

As an example of application, we consider now the contribution of the higher-order WKB
corrections to the energy eigenvalues of the Schrödinger equation with the quasi-exactly
solvable potential, V (x) = 10x2 + 10x4 + x6, for which the energy levels are determined
by the equality [39–41]

E4 − 140E3 + 6110E2 − 88 540E + 252 105 = 0 n = 0, 2, 4. (17)

Table 1 illustrates how the inclusion of the higher-order corrections in the quantization
condition (15) improves the accuracy of the WKB eigenvalues. From the table it is seen that,
according to the rule of passage to the classical limit (7), ground states are not accurately
calculated by the WKB method, even if the higher-order corrections are taken into account.
The error, which was equal to 0.5% after including the first correction, decreases only to 0.1%
when third- and fourth-order integrals are considered. However, the error rapidly decreases
for increasing main quantum number, and already for the second excited state becomes less
than 10−7%.



6598 G A Dobrovolsky and R S Tutik

Table 1. The energy eigenvalues for the potential, V (x) = 10x2 + 10x4 + x6, computed with the
regularized WKB quantization condition (15), included corrections of the order up to h̄2k . Here n

is the quantum number and Eexact is given by (17).

k n = 0 n = 2 n = 4

0 3.483 289 04 21.631 370 779 44.239 398 6553
1 3.706 117 47 21.745 513 565 44.325 317 4643
2 3.717 768 96 21.745 741 462 44.325 354 1810
3 3.718 643 63 21.745 705 806 44.325 350 2556
4 3.715 138 65 21.745 700 678 44.325 350 1080
5 3.702 718 85 21.745 700 559 44.325 350 1124
6 3.659 044 83 21.745 700 933 44.325 350 1144

Eexact 3.725 616 03 21.745 704 430 44.325 350 1153

5. Conclusion

We have proposed a general method for calculating the higher-order WKB integrals with
real-analytic potentials. The method is based upon the explicit separation of the integrand
singularities which occur in the WKB quantization condition. Then transformed integrals
may be computed routinely for obtaining the energy eigenvalues to a high degree of accuracy.
This is demonstrated by calculating the eigenvalues for the quasi-exactly solvable potential,
V (x) = 10x2 + 10x4 + x6.
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